Optimal contact map alignment of protein–protein interfaces
نویسندگان
چکیده
The long-standing problem of constructing protein structure alignments is of central importance in computational biology. The main goal is to provide an alignment of residue correspondences, in order to identify homologous residues across chains. A critical next step of this is the alignment of protein complexes and their interfaces. Here, we introduce the program CMAPi, a two-dimensional dynamic programming algorithm that, given a pair of protein complexes, optimally aligns the contact maps of their interfaces: it produces polynomial-time near-optimal alignments in the case of multiple complexes. We demonstrate the efficacy of our algorithm on complexes from PPI families listed in the SCOPPI database and from highly divergent cytokine families. In comparison to existing techniques, CMAPi generates more accurate alignments of interacting residues within families of interacting proteins, especially for sequences with low similarity. While previous methods that use an all-atom based representation of the interface have been successful, CMAPi's use of a contact map representation allows it to be more tolerant to conformational changes and thus to align more of the interaction surface. These improved interface alignments should enhance homology modeling and threading methods for predicting PPIs by providing a basis for generating template profiles for sequence-structure alignment.
منابع مشابه
Protein Structure Comparison via Contact Map Alignment
VALENTIM, Felipe Leal. Protein Structure Comparison via Contact Map Alignment. 2010. 77 p. Master thesis (Master in Plant Biotechnology) Universidade Federal de Lavras, Lavras.* Proteins are primary components in almost all biological processes in living organisms. It is known that the variety of protein functions is a result of the differences in protein structures. Therefore, understanding an...
متن کاملFast overlapping of protein contact maps by alignment of eigenvectors
MOTIVATION Searching for structural similarity is a key issue of protein functional annotation. The maximum contact map overlap (CMO) is one of the possible measures of protein structure similarity. Exact and approximate methods known to optimize the CMO are computationally expensive and this hampers their applicability to large-scale comparison of protein structures. RESULTS In this article,...
متن کامل1001 Optimal PDB Structure Alignments: Integer Programming Methods for Finding the Maximum Contact Map Overlap
Protein structure comparison is a fundamental problem for structural genomics, with applications to drug design, fold prediction, protein clustering, and evolutionary studies. Despite its importance, there are very few rigorous methods and widely accepted similarity measures known for this problem. In this paper we describe the last few years of developments on the study of an emerging measure,...
متن کاملFinding optimal interaction interface alignments between biological complexes
MOTIVATION Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which are key S: to understanding their evolutionary histories and functions. Although various structure alignment methods have been developed to successf...
متن کاملA Parameterized Algorithm for Protein Structure Alignment
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein size and exponential with respect to two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 شماره
صفحات -
تاریخ انتشار 2008